[1] Li S, Wang Z, Zhang M,
et al. Mechanism and kinetic modeling study on the
crystallization of concomitant polymorphs[J]. AIChE Journal, e18516.
https://doi.org/10.1002/aic.18516
[2] Li M, Zhou X, Han D,
et al. Constructing Porous Energetic Spherulites via
Solvation‐Growth Coupling for Enhanced Combustion[J]. Small,
2024: 2400970. https://doi.org/10.1002/smll.202400970
[3] Zheng H, Zhang Y,
Zhang X, et al. Construction of the Red‐Green‐Blue
Luminescence Conversion System Based on Donor‐Acceptor Dyes Exchange with Diels‐Alder Dynamic Covalent Bonds[J]. ChemPhotoChem,
e202400050. https://doi.org/10.1002/cptc.202400050
[4] Su X, Sun J, Liu J, et
al. Bifunctional Chiral Agent Enables One‐pot Spontaneous Deracemization of Racemic Compounds[J]. Angewandte
Chemie International Edition, 2024: e202402886. https://doi.org/10.1002/anie.202402886
[5] Wang Y, Meng X, Wang
D, et al. Tailoring surface defects to enhance PBX
surface adhesion through autologous surface molecular reconfiguration[J]. Surfaces
and Interfaces, 2024, 49: 104448. https://doi.org/10.1016/j.surfin.2024.104448
[6] Zhu Z, Zhang Y, Wang
Z, et al. Artificial Intelligence Assisted Pharmaceutical
Crystallization[J]. Crystal Growth & Design, 2024, 24(10):
4245-4270. https://doi.org/10.1021/acs.cgd.3c01408
[7] Qu H, Gao Y, Zhou L,
et al. Construction of fungicide nano delivery
platform through crystal engineering for sustainable fungal control[J]. Chemical
Engineering Journal, 2024, 490: 151902. https://doi.org/10.1016/j.cej.2024.151902
[8] Tang X, Jia S, Tang W, et al. Highly
efficient freezing desalination technology: Parameters optimization and model
configuration[J]. Desalination, 2024, 576: 117331. https://doi.org/10.1016/j.desal.2024.117331
[9] Lin J, Zhou J, Li L,
et al. Highly efficient in crystallo energy
transduction of light to work[J]. Nature Communications, 2024, 15(1):
3633. https://doi.org/10.1038/s41467-024-47881-6
[10] Jia S, Yang B, Du J,
et al. Uncovering the Recent Progress of CNC‐Derived Chirality Nanomaterials: Structure and Functions[J]. Small,
2024: 2401664. https://doi.org/10.1002/smll.202401664
[11] Yao M, Yi B, Wang L,
et al. Recovering phosphorus as struvite microspheres
with multiple excellent application performance via crystallization method[J]. Separation
and Purification Technology, 2024, 346: 127420. https://doi.org/10.1016/j.seppur.2024.127420
[12] Liu Y, Wang S, Li M,
et al. Design and preparation of spherical particles
in water via thermal-induced liquid-liquid phase separation and a molecular
mechanism study[J]. Chemical Engineering Science, 2024, 295: 120170. https://doi.org/10.1016/j.ces.2024.120170
[13] Wang Y, Wang C, Wang
D, et al. Understanding the Relationship between
Molecular Assembly and Polymorph Selection of 4, 4′, 5, 5′-Tetranitro-1 H, 1′
H-[2, 2′-biimidazole]-1, 1′-diamine in Solution[J]. Crystal Growth &
Design, 2024, 24(8): 3430-3440. https://doi.org/10.1021/acs.cgd.4c00149
[14] Liu Y, Li M, Lian Y, et al. pH-Driven
Self-Assembly of Functional Lysozyme–Hyaluronan Complex Colloidal Nanoparticles
for the Oral Delivery of Lutein[J]. Crystal Growth & Design, 2024,
24(7): 2888-2899. https://doi.org/10.1021/acs.cgd.3c01533
[15] Guo S, Cao Y, Zhang
Y, et al. A Scalable Freeze-Dissolving Approach to
Prepare Ultrafine Crystals for Inhalation: Mechanism and Validation[J]. Crystal
Growth & Design, 2024, 24(7): 2918-2931. https://doi.org/10.1021/acs.cgd.4c00018
[16] Sun M, Gao M, Bi J,
et al. Highly Efficient Hydrogel Encapsulation of
Hydrophobic Drugs via an Organic Solvent-Free Process Based on Oiling-Out
Crystallization and a Mechanism Study[J]. ACS Sustainable Chemistry &
Engineering, 2024, 12(12): 4813-4824. https://doi.org/10.1021/acssuschemeng.3c06018
[17] Zhang Y, Li B, Liu J,
et al. Inhibition of Crystal Nucleation and Growth: A
Review[J]. Crystal Growth & Design, 2024, 24(6): 2645-2665. https://doi.org/10.1021/acs.cgd.3c01345
[18] Han R, Li Y, Jia S,
et al. Process kinetics and regulation in reactive
crystallization: Polymorphic control and morphology optimization for enhancing
powder properties of thiothiamine[J]. Powder Technology, 2024, 439:
119715. https://doi.org/10.1016/j.powtec.2024.119715
[19] Li M, Liu J, Yao T,
et al. Deep-learning based in-situ micrograph analysis
of high-density crystallization slurry using image and data enhancement
strategy[J]. Powder Technology, 2024, 437: 119582. https://doi.org/10.1016/j.powtec.2024.119582
[20] Han Y, Han R, Li Z,
et al. Polymorphic Development Strategy for Rapid
Pesticide Release: A Case Study of Spirotetramat[J]. Crystal Growth & Design, 2024, 24(6): 2395-2405. https://doi.org/10.1021/acs.cgd.3c01306
[21] Kang X, Zhang M, Tang
W, et al. Growth “self-inhibition” of irbesartan
desmotrope: surface intra-annular tautomer inter-conversion is the culprit[J]. Chemical Communications, 2024, 60(26): 3511-3514. DOI https://doi.org/10.1039/D3CC06170A
[22] Sun M, Bi J, Zhao Y,
et al. Particle Design of Drugs via Spherical
Crystallization: A Review from Fundamental Aspects to Technology
Development[J]. Crystal
Growth & Design, 2024,
24(5): 2266-2287. https://doi.org/10.1021/acs.cgd.3c01258
[23] Kuang W, Jing B, Wu S, et al. Flexible
Organic Crystal with Two-Dimensional Elastic Bending and Recoverable Plastic
Twisting for Circularly Polarized Luminescence[J]. CCS Chemistry, 2024: 1-9. https://doi.org/10.31635/ccschem.024.202303561
[24] Wang S, Jia S, Gao Z, et al. Highly
efficient crystallization for sustainable azeotrope separation of formic
acid-Water[J]. Separation
and Purification Technology, 2024, 342: 126821. https://doi.org/10.1016/j.seppur.2024.126821
[25] Li K, Li J, Peng H,
et al. Study on agglomeration mechanism of ammonium
paratungstate pentahydrate and controllable preparation of pure monodisperse
crystals[J]. Powder Technology, 2024, 438: 119572. https://doi.org/10.1016/j.powtec.2024.119572
[26] Li F, Wei J, Wang D,
et al. Ce-doped CuCoO2 delafossite with switchable PMS
activation pathway for tetracycline degradation[J]. Chemical Engineering Journal, 2024, 481: 148633. https://doi.org/10.1016/j.cej.2024.148633
[27] Tang X, Zhang Y, Tao
T, et al. Versatile Roles of Modifiers in Crystal Growth
and Morphology Modification of Lithium Hydroxide Monohydrate[J]. Crystal Growth & Design, 2024, 24(3): 1235-1244. https://doi.org/10.1021/acs.cgd.3c01204
[28] Zhao C, Wang X, Liu
Y, et al. Uncovering the mechanism of Tenofovir
amibufenamide fumarate punch sticking by combining direct compression
experiment and computational simulation[J]. International Journal of Pharmaceutics, 2024, 653: 123813. https://doi.org/10.1016/j.ijpharm.2024.123813
[29] Li Z, Jia S, Wu S, et al. Influence of the
substituent in the benzene ring on the structure and properties of two
isostructural crystals[J]. CrystEngComm, 2024.
https://doi.org/10.1039/D4CE00163J
[30] Zhang X, Li Z, Han R,
et al. Modulation of luminescence properties of
cocrystals composed of amino substituted dimethyl phthalates and 1, 2, 4,
5-tetracyanobenzene by crystal engineering[J]. CrystEngComm, 2024.
https://doi.org/10.1039/D4CE00218K
[31] Shao Y, Han R, Tao T,
et al. Practical techniques for protein
crystallization: additive assistance and external field intensification[J]. CrystEngComm,
2024, 26(7): 897-912. https://doi.org/10.1039/D3CE00995E